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Overview
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e Background:

— Piezocomposite technology and aeronautics applications
(SOA)

— Self-latching piezocomposite concept (this effort)

* Phase | activities:
— Self-latching actuator proof-of-concept demonstration
— Mathematical model validation efforts
— Optimization for self-latching

e Future work; Phase Il plans:
— Self-latching control surface fabrication
— Wind tunnel validation



s Piezocomposite Actuators
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Solid-State Piezocomposite Control for
Small Aircraft

Ref: Bilgen, 2013
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Can we create a piezocomposite control
7\ surface that does not require power to
» maintain a deflection?
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Shape Memory Ceramics

0. Initial (or return) power-off unlatched state 3. Repoling reset state

1. Unpoling state

Electric Field (kV/cm)

Fig.2 Field-induced strain curves for the lead :
stannate system Pb( 99Nb( 02((ZrxkSn1-x)1-yTiy)
Top: x = 0.060, and bottom: x = 0.065. '

Ref: Uchino, K., “Recent Trend of Piezoelectric
Actuator Developments,” IEEE International
Symposium on Micromechatronics and Human
Science, 1999.

2.3 Phase-Change Materials

Concerning the phase-change-related strains, polarization
induction by switching from an antiferroelectric to a
ferroelectric state, has been proposed [10]. Figure 2 shows
the field-induced strain curves taken for the lead zirconate
stannate  based  Pb0.99NbQ 02((ZrxSn1-x)1-yTiy)0.9803
system. The longitudinally induced strain reaches up to
0.4%, which is larger than that expected in normal
piezostrictors or electrostrictors. A rectangular-shape
hysteresis in Fig.2 top, referred to as a "digital displacement
transducer" because of the two on/off strain states. is
interesting. Moreover, this field-induced transition exhibits a
shape memory effect in appropriate compositions (Fig.2
bottom). Once the ferroelectric phase has been induced, the
material will "memorize” its ferroelectric state even under
zero-field conditions, although it can be erased with the
application of a small reverse bias field [11]. This shape
memory ceramic is used in energy saving actuators. A
latching relay is composed of a shape memory ceramic
unimorph and a mechanical snap action switch, which 1is
driven by a pulse voltage of 4ms. Compared with the
conventional electromagnetic relays, the new relay is much
simple and compact in structure with almost the same
response time.

[10] K.Uchino and S.Nomura, Ferroelectrics, 50(1), 191
(1983)

[11] A Furuta, K.Y.Oh and K.Uchino, Sensors and Mater.,
3(4), 205 (1992)



Is there a self-latching effect in MFC
piezocomposites?

Initial Test

e Several tests ran in which the MFC is
fully poled and then a negative back
field is applied.

* Negative back field ranged from 0 to
-2500V in increments of -100V.

Voltage Profile
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Latching effect proof-of-concept with
PZT-5SH-based MFC demonstrated

Longitud_inal Strain
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Can we model and predict or
design for this effect?
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Linear Piezoelectric Finite Element Formulation

Initial Weak Form: Constitutive Laws:
[{c,00, - DSE}dQ=[{bou}dQ+ [{tou,—wdp}dl  o,=cj(q,~&)-
Q Q r N
D, _Br =€ (
FEM Discretized Governing Equations:
(K, )y at+(Ky) 8" = [{cEbNz }aQ+ [{bN2}dQ+ [{e, N2} dr
Q Q r

(K, )kb i —(Ky )ab ¢ = j{(%@fl _Er)Nf,i}dQ_I{wa}dr

Stiffness Matrix
Stiffness Mat




g FEM Model
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Micromechanical Switching Routine

General Description
» Stress, electric field and remnant values dictated by linear FEM.

* No grain to grain interactions

» Switching criterion reorients the grain changing the remnant polariza
remnant strain. This is fed back into the linear FEM code.

Switching Criterion

EAR" +0,AQ, 2W,, // // //




@&\ FEM Model
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@ FEM Model
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MFC Geometry Parameters
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YN FEM Model
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Explanation Gauss’ Law
D2 s limited by the saturation
po.Iarlzatlon c?f the material 0= Llpl.ag: ngz.ag
* Thisisonly sllghtIY larger than the O~DA
remnant polarization value of 0.35
C/m?2. @ =D,
* When the electrode contact area (A,) is D, ~ %AI
less than the fiber cross sectional area 2

(A;), the fiber cannot be polarized
* lIdeally 2L,/H=1 for smallest electrode
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YN FEM Model
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#% Model validation studies
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Parametric Tests

* To confirm FEM model predictions,
50 interdigitated PZT-5H plates
ordered.

* The plates have various patterned

Example IDEs Ordered

electrodes as shown below.
» Tests currently underway

Height 1
L2/H 1.5 0.75 0.5 0.25 0.141667
(L-L2)/H
1 Specimen1 | Specimen 2 Specimen 3 Specimen 4 Specimen 5
2 Specimen 6 | Specimen 7 Specimen 8 Specimen 9 Specimen 10
2.5 Specimen 11 | Specimen 12 | Specimen 13 Specimen 14 | Specimen 15
3 Specimen 16 | Specimen 17 | Specimen 18 | Specimen 19 | Specimen 20
3.5 Specimen 21 | Specimen 22 Specimen 23 Specimen 24 Specimen 25
Height 2
L2/H 1.5 0.75 0.5 0.25 0.141667
(L-L2)/H
1 Specimen 26 | Specimen 27 | Specimen 28 | Specimen 29 | Specimen 30
2 Specimen 31 | Specimen 32 | Specimen 33 | Specimen 34 | Specimen 35
2.5 Specimen 36 | Specimen 37 Specimen 38 Specimen 39 Specimen 40
3 Specimen 41 | Specimen 42 Specimen 43 Specimen 44 Specimen 45
3.5 Specimen 46 | Specimen47 | Specimen48 | Specimen49 | Specimen 50




New materials for optimizing desired
self-latching behavior

PLSNnZT Strain Profile
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Solid-state variable camber
piezocomposite airfoil
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Continuous Surface Variable-Camber Wing U p pe r
Continuous Boundary, Actuated with MFCs, Exc=C8 .
Swansea University, July 2012, (c) Onur Bilgen S u rface :
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<% Phase | Summary and Status
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* Phase | objectives:
— Self latching piezocomposite proof-of-concept (non-optimized)
demonstrated experimentally
— Experimental validation of nonlinear FEM model underway:

* Parametric actuator test coupon fabrication (100 test articles) complete,
6/2013.

» Testing underway, 7/2013.

» Validated model will be used to design electrodes for optimized self-
latching actuator package (est. 8/2013)

— “Exotic” piezoceramic material fabrication for improved self-latching
actuator complete, 7/2013.
* Materials to be incorporated into self-latching specimens in August.

— Active airfoil preliminary concept defined

 Self-latching piezocomposite can be a “drop-in” replacement for
standard MFC in Bilgen deformable airfoils



Phase |l future work
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* Phase Il objectives:
— NASA/UCLA to optimize “exotic” self-latching piezocomposite actuator
— Prof. Bilgen (ODU) brought on board to design active airfoils

— Set-and-hold capability of self-latching airfoils to be validated in low-
speed wind tunnel tests at ODU
* Baseline and optimized self-latching piezocomposites to be tested

* Planned publications/invention disclosures:
— NTR filed (NTR 1375456665, 2 August 2013)
— NASA TM on Phase | work (October 2013)
— Conference presentations TBD (NASA travel dependent)

 Cross-cutting applications interest:

— Self-latching piezocomposite technology is cross-cutting with space
and adaptive optics applications.

— STMD funding sources to be sought to develop space applications.
July 9-11, 2013 NASA Aeronautics Research Mission Directorate FY12 Seedling Phase | Technical Seminar 20
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Questions?
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